Cargando…
Reducing the Biases in Machine Learning Algorithms for Higgs Physics
This report examines the reduction of classification uncertainty for Higgs bosons produced in vector boson fusion (VBF) which decay via the diphoton channel. ATLAS reports a high uncertainty in the measured standard model (SM) Higgs to vector boson coupling strengths. An adversarial neural network (...
Autor principal: | Katsarov, Stefan |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2866920 |
Ejemplares similares
-
Deep Learning Methods Applied to Higgs Physics at the LHC
por: Strong, Giles Chatham
Publicado: (2021) -
Application of Machine Learning for the Higgs Boson Mass Reconstruction Using ATLAS Data
por: Herold, Adam
Publicado: (2022) -
Application of Machine Learning for the Charged Higgs Boson Search Using ATLAS Data
por: Pospisil, Jiri
Publicado: (2022) -
Machine Learning For Top Quark Physics
por: Bols, Emil Sorensen
Publicado: (2022) -
Higgs Physics at CMS
por: Donato, Silvio
Publicado: (2017)