Cargando…
Accelerator Control using Gaussian Process Model Predictive Control Based Reinforcement Learning
<!--HTML-->Abstract: This project aims to develop a model-based Reinforcement Learning (RL) algorithm, based on the GP-MPC(Gaussian Process-Model Predictive Control) approach, for controlling accelerator systems using Machine Learning. By leveraging insufficient data and uncertainty quantifica...
Autor principal: | Aye, Su |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2868378 |
Ejemplares similares
-
Counterdiabatic drive and quantum optimal control for spin annealing schedules
por: Barone, Francesco Pio
Publicado: (2023) -
FPGA-Accelerated Neural Network Inference for Ultra-Low-Latency Recalibration and Classification of Physics Objects at 40 MHz within CMS
por: Choudhury, Diptarko
Publicado: (2023) -
Shelter tents mapping by machine learning and satellite imagery
por: Cheng, Hsiu-Chi
Publicado: (2023) -
Reinforcement learning and its applications at CERN
por: Bunino, Matteo
Publicado: (2023) -
Inference of ML models on Intel GPU with SYCL and Intel OneAPI using SOFIE
por: Panagou, Ioanna Maria
Publicado: (2023)