Cargando…
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
With the High-Luminosity upgrade of the LHC, the number of simultaneous proton-proton collisions will be increased to up to 200. This requires an extensive overhaul of the detector systems. For the ATLAS Liquid Argon calorimeter electronics, 556 high performance FPGAs will be installed to reconstruc...
Autor principal: | Voigt, Johann Christoph |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2868542 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Voigt, Johann Christoph
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Fortin, Etienne Marie
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Berthold, Anne-Sophie
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Gutsche, Christian
Publicado: (2023)