Cargando…
Training Neural Networks with Universal Adiabatic Quantum Computing
The training of neural networks (NNs) is a computationally intensive task requiring significant time and resources. This paper presents a novel approach to NN training using Adiabatic Quantum Computing (AQC), a paradigm that leverages the principles of adiabatic evolution to solve optimisation probl...
Autores principales: | Abel, Steve, Criado, Juan Carlos, Spannowsky, Michael |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2868776 |
Ejemplares similares
-
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
QuASK - Quantum Advantage Seeker with Kernels
por: Di Marcantonio, Francesco, et al.
Publicado: (2022) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
por: Chang, Su Yeon, et al.
Publicado: (2021) -
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021)