Cargando…
Quantum-Powered Time Series Forecasting in Finance: Replication, Reliability, and Architectural Exploration
<!--HTML-->Machine learning has enabled computers to learn from data and improve their performance on tasks, revolutionizing various industries by automating processes, uncovering insights, and enhancing decision-making. NISQ (Noisy Intermediate-Scale Quantum) refers to the current stage of q...
Autor principal: | Spiro, Andrew Charles |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2868826 |
Ejemplares similares
-
Focused Forecasts: Attention maps for large-scale model understanding in the AtmoRep project
por: Hidary, David
Publicado: (2023) -
Power efficiency of HEP applications on CPU & GPU
por: Tuteja, Keshvi
Publicado: (2023) -
Counterdiabatic drive and quantum optimal control for spin annealing schedules
por: Barone, Francesco Pio
Publicado: (2023) -
Exploring Cybersecurity Frontiers: Challenges regarding 2FA, Incident Response, and Web Scanning
por: Licu, Mihai
Publicado: (2023) -
Exploring hybrid quantum-classical neural networks for particle tracking
por: Rieger, Carla
Publicado: (2020)