Cargando…
FlashSim: accelerating HEP simulation with an end-to-end Machine Learning framework
We developed a first prototype of an end-to-end machine learning based simulation framework for arbitrary analysis ntuples at the CMS experiment. Such a framework, called FlashSim, was capable of simulating a wide variety of physical objects with good performance on 1d distributions, correlations an...
Autor principal: | Vaselli, Francesco |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2869306 |
Ejemplares similares
-
FlashSim prototype: an end-to-end fast simulation using
Normalizing Flow
por: Vaselli, Francesco, et al.
Publicado: (2023) -
End-to-end Deep Learning Inference in CMS software framework
por: CMS Collaboration
Publicado: (2023) -
Simulation of the LHCb front-end
por: Christiansen, J, et al.
Publicado: (2000) -
Quantum Machine Learning for HEP Detector Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
The ATLAS calorimeter simulation FastCaloSim
por: Yamanaka, T
Publicado: (2011)