Cargando…
Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
We compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chir...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(95)01124-9 http://cds.cern.ch/record/286938 |
_version_ | 1780888386083487744 |
---|---|
author | Donini, A. Martinelli, G. Sachrajda, Christopher T. Talevi, M. Vladikas, A. |
author_facet | Donini, A. Martinelli, G. Sachrajda, Christopher T. Talevi, M. Vladikas, A. |
author_sort | Donini, A. |
collection | CERN |
description | We compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16^3 \times 32 lattice, at \beta=6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element \<\bar K^0| O^{\Delta S=2} | K^0\>_{\latt}. |
id | cern-286938 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1995 |
record_format | invenio |
spelling | cern-2869382023-03-14T18:58:21Zdoi:10.1016/0370-2693(95)01124-9http://cds.cern.ch/record/286938engDonini, A.Martinelli, G.Sachrajda, Christopher T.Talevi, M.Vladikas, A.Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operatorParticle Physics - LatticeWe compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16^3 \times 32 lattice, at \beta=6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element \<\bar K^0| O^{\Delta S=2} | K^0\>_{\latt}.We compute the renormalised four-fermion operator $O~{\Delta S=2}$ using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, $O~{\Delta S=2}$ mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a $16~3 \times 32$ lattice, at $\beta=6.0$. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element $\<\bar K~0| O~{\Delta S=2} | K~0\>_{\latt}$.We compute the renormalised four-fermion operator O ΔS =2 using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O ΔS =2 mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16 3 × 32 lattice, at β = 6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element 〈 K 0 |O ΔS=2 |K 0 〉 latt.hep-lat/9508020CERN-TH-95-23CERN-TH-95-023ROME-1084-1995SHEP-95-25ROMA-1-1084CERN-TH-95-23SHEP-95-25oai:cds.cern.ch:2869381995-08-21 |
spellingShingle | Particle Physics - Lattice Donini, A. Martinelli, G. Sachrajda, Christopher T. Talevi, M. Vladikas, A. Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title | Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title_full | Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title_fullStr | Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title_full_unstemmed | Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title_short | Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator |
title_sort | non-perturbative renormalisation of the lattice $\delta$s = 2 four-fermion operator |
topic | Particle Physics - Lattice |
url | https://dx.doi.org/10.1016/0370-2693(95)01124-9 http://cds.cern.ch/record/286938 |
work_keys_str_mv | AT doninia nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator AT martinellig nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator AT sachrajdachristophert nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator AT talevim nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator AT vladikasa nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator |