Cargando…

Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator

We compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chir...

Descripción completa

Detalles Bibliográficos
Autores principales: Donini, A., Martinelli, G., Sachrajda, Christopher T., Talevi, M., Vladikas, A.
Lenguaje:eng
Publicado: 1995
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0370-2693(95)01124-9
http://cds.cern.ch/record/286938
_version_ 1780888386083487744
author Donini, A.
Martinelli, G.
Sachrajda, Christopher T.
Talevi, M.
Vladikas, A.
author_facet Donini, A.
Martinelli, G.
Sachrajda, Christopher T.
Talevi, M.
Vladikas, A.
author_sort Donini, A.
collection CERN
description We compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16^3 \times 32 lattice, at \beta=6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element \<\bar K^0| O^{\Delta S=2} | K^0\>_{\latt}.
id cern-286938
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1995
record_format invenio
spelling cern-2869382023-03-14T18:58:21Zdoi:10.1016/0370-2693(95)01124-9http://cds.cern.ch/record/286938engDonini, A.Martinelli, G.Sachrajda, Christopher T.Talevi, M.Vladikas, A.Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operatorParticle Physics - LatticeWe compute the renormalised four-fermion operator O^{\Delta S=2} using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O^{\Delta S=2} mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16^3 \times 32 lattice, at \beta=6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element \<\bar K^0| O^{\Delta S=2} | K^0\>_{\latt}.We compute the renormalised four-fermion operator $O~{\Delta S=2}$ using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, $O~{\Delta S=2}$ mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a $16~3 \times 32$ lattice, at $\beta=6.0$. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element $\&lt;\bar K~0| O~{\Delta S=2} | K~0\&gt;_{\latt}$.We compute the renormalised four-fermion operator O ΔS =2 using a non-perturbative method recently introduced for determining the renormalisation constants of generic lattice composite operators. Because of the presence of the Wilson term, O ΔS =2 mixes with operators of different chiralities. A projection method to determine the mixing coefficients is implemented. The numerical results for the renormalisation constants have been obtained from a simulation performed using the SW-Clover quark action, on a 16 3 × 32 lattice, at β = 6.0. We show that the use of the constants determined non-perturbatively improves the chiral behaviour of the lattice kaon matrix element 〈 K 0 |O ΔS=2 |K 0 〉 latt.hep-lat/9508020CERN-TH-95-23CERN-TH-95-023ROME-1084-1995SHEP-95-25ROMA-1-1084CERN-TH-95-23SHEP-95-25oai:cds.cern.ch:2869381995-08-21
spellingShingle Particle Physics - Lattice
Donini, A.
Martinelli, G.
Sachrajda, Christopher T.
Talevi, M.
Vladikas, A.
Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title_full Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title_fullStr Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title_full_unstemmed Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title_short Non-perturbative renormalisation of the lattice $\Delta$S = 2 four-fermion operator
title_sort non-perturbative renormalisation of the lattice $\delta$s = 2 four-fermion operator
topic Particle Physics - Lattice
url https://dx.doi.org/10.1016/0370-2693(95)01124-9
http://cds.cern.ch/record/286938
work_keys_str_mv AT doninia nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator
AT martinellig nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator
AT sachrajdachristophert nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator
AT talevim nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator
AT vladikasa nonperturbativerenormalisationofthelatticedeltas2fourfermionoperator