Cargando…
Jet Energy Calibration with Deep Learning as a Kubeflow Pipeline
Precise measurements of the energy of jets emerging from particle collisions at the LHC are essential for a vast majority of physics searches at the CMS experiment. In this study, we leverage well-established deep learning models for point clouds and CMS open data to improve the energy calibration o...
Autores principales: | Holmberg, Daniel, Golubovic, Dejan, Kirschenmann, Henning |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-023-00103-y http://cds.cern.ch/record/2869501 |
Ejemplares similares
-
Standard Model QCD with jets and photons at CMS and ATLAS
por: Kirschenmann, Henning
Publicado: (2021) -
Does Lorentz-symmetric design boost network performance in jet physics?
por: Li, Congqiao, et al.
Publicado: (2022) -
Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC
por: Orzari, Breno, et al.
Publicado: (2021) -
The DNNLikelihood: enhancing likelihood distribution with Deep Learning
por: Coccaro, Andrea, et al.
Publicado: (2019) -
A GPU based multidimensional amplitude analysis to search for tetraquark candidates
por: Sur, Nairit, et al.
Publicado: (2021)