Cargando…
Applying and optimizing the Exa.TrkX Pipeline on the OpenDataDetector with ACTS
Machine learning is a promising field to augment and potentially replace part of the event recon- struction of high-energy physics experiments. This is partly due to the fact that many machine- learning algorithms offer relatively easy portability to heterogeneous hardware and thus could play an imp...
Autores principales: | Calafiura, Paolo, Heinrich, Lukas, Huth, Benjamin, Ju, Xiangyang, Lazar, Alina, Murnane, Daniel, Salzburger, Andreas, Wettig, Tilo |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.414.0227 http://cds.cern.ch/record/2869548 |
Ejemplares similares
-
Physics and Computing Performance of the Exa.TrkX TrackML Pipeline
por: Murnane, Daniel Thomas
Publicado: (2021) -
The ADAMO data system: EXA, the cars example
por: Fisher, S M, et al.
Publicado: (1992) -
Machine learning for surface prediction in ACTS
por: Huth, Benjamin, et al.
Publicado: (2021) -
Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project
por: Ammendola, R, et al.
Publicado: (2017) -
ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P^3MA, VHPC, WOPSSS
por: Taufer, Michela, et al.
Publicado: (2016)