Cargando…
Quantum machine learning in the latent space of high energy physics events
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical...
Autores principales: | Anna Woźniak, Kinga, Belis, Vasilis, Pierini, Maurizio, Vallecorsa, Sofia, Dissertori, Günther, Barkoutsos, Panagiotis, Tavernelli, Ivano |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012115 http://cds.cern.ch/record/2870191 |
Ejemplares similares
-
Quantum anomaly detection in the latent space of proton collision events at the LHC
por: Woźniak, Kinga Anna, et al.
Publicado: (2023) -
CERN Quantum Technology Initiative Strategy and Roadmap
por: Di Meglio, Alberto, et al.
Publicado: (2021) -
Unravelling physics beyond the standard model with classical and quantum anomaly detection
por: Schuhmacher, Julian, et al.
Publicado: (2023) -
Quantum Angle Generator for Image Generation
por: Florian, Rehm, et al.
Publicado: (2022) -
On protocols for increasing the uniformity of random bits generated with noisy quantum computers
por: Combarro, Elías F, et al.
Publicado: (2021)