Cargando…
Particle identification with machine learning in ALICE Run 3
The main focus of the ALICE experiment, quark--gluon plasma measurements, requires accurate particle identification (PID). The ALICE subdetectors allow identifying particles over a broad momentum interval ranging from about 100 MeV/c up to 20 GeV/c. However, a machine learning (ML) model can explore...
Autores principales: | Karwowska, Maja, Jakubowska, Monika, Graczykowski, Łukasz, Deja, Kamil, Kasak, Miłosz |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2871452 |
Ejemplares similares
-
Using Machine Learning for Particle Identification in ALICE
por: Graczykowski, Łukasz Kamil, et al.
Publicado: (2022) -
The ALICE trigger system for LHC Run 3
por: Krivda, M., et al.
Publicado: (2017) -
PID performance of the ALICE-TOF detector in Run 2
por: Jacazio, Nicolò
Publicado: (2018) -
ALICE Central Trigger System for LHC Run 3
por: Kvapil, Jakub, et al.
Publicado: (2021) -
Vertexing detectors and vertexing performance in Run 2 in ALICE
por: Faggin, Mattia
Publicado: (2020)