Cargando…
Hyperparameter optimization of data-driven AI models on HPC systems
In the European Center of Excellence in Exascale Computing ”Research on AI- and Simulation-Based Engineering at Exascale” (CoE RAISE), researchers develop novel, scalable AI technologies towards Exascale. This work exercises High Performance Computing resources to perform large-scale hyperparameter...
Autores principales: | Wulff, Eric, Girone, Maria, Pata, Joosep |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012092 http://cds.cern.ch/record/2871810 |
Ejemplares similares
-
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)