Cargando…
Ensemble Models for Calorimeter Simulations
Foreseen increasing demand for simulations of particle transport through detectors in High Energy Physics motivated the search for faster alternatives to Monte Carlo-based simulations. Deep learning approaches provide promising results in terms of speed up and accuracy, among which generative advers...
Autores principales: | Jaruskova, K, Vallecorsa, S |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/2438/1/012080 http://cds.cern.ch/record/2871828 |
Ejemplares similares
-
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Fast simulation of electromagnetic particle showers in high granularity calorimeters
por: da Rocha, Ricardo Brito, et al.
Publicado: (2020) -
Large-scale distributed training applied to generative adversarial networks for calorimeter simulation
por: Vlimant, Jean-Roch, et al.
Publicado: (2019) -
Development of a Fast Simulation of the LHCb Calorimeter
por: Vitali, Giacomo
Publicado: (2018) -
Calorimeter fast simulation based on hit libraries LHCb Gauss framework
por: Rama, Matteo, et al.
Publicado: (2019)