Cargando…
Binning high-dimensional classifier output for HEP analyses through a clustering algorithm
The usage of Deep Neural Networks (DNNs) as multi-classifiers is widespread in modern HEP analyses. In standard categorisation methods, the high-dimensional output of the DNN is often reduced to a one-dimensional distribution by exclusively passing the information about the highest class score to th...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872249 |
Ejemplares similares
-
CLUE: a clustering algorithm for current and future experiments
por: CMS Collaboration
Publicado: (2022) -
HF and HEP17: phase1 upgrade performances
por: CMS Collaboration
Publicado: (2017) -
A multi-channel 24.4 ps bin size Time-to-Digital Converter for HEP applications
por: Mester, C, et al.
Publicado: (2008) -
Efficiency parametrization of b-tagging classifier using Graph Neural Networks
por: CMS Collaboration
Publicado: (2022) -
Comparison of Two-Dimensional Binned Data Distributions Using the Energy Test
por: Reid, Ivan, et al.
Publicado: (2008)