Cargando…
Refining fast simulation using machine learning
At the CMS experiment, a growing reliance on the fast Monte Carlo application (FastSim) will accompany the high luminosity and detector granularity expected in Phase 2. The FastSim chain is roughly 10 times faster than the application based on the GEANT4 detector simulation and full reconstruction r...
Autores principales: | Bein, Samuel, Connor, Patrick, Pedro, Kevin, Schleper, Peter, Wolf, Moritz |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872274 |
Ejemplares similares
-
Machine Learning for Particle Identification and Deep Generative Models Towards Fast Simulations for the ALICE Transition Radiation Detector at CERN
por: Viljoen, Christiaan
Publicado: (2020) -
Fast Simulation of the CMS Detector at the LHC
por: Abdullin, Salavat, et al.
Publicado: (2010) -
CMS Fast Simulation
por: Rahmat, Rahmat
Publicado: (2012) -
The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim
por: ATLAS, Coll, et al.
Publicado: (2010) -
Fast Machine Learning in the CMS Level-1 Trigger for the High-Luminosity LHC
por: Brown, Christopher Edward
Publicado: (2023)