Cargando…
End-to-end deep learning inference with CMSSW via ONNX using Docker
Deep learning techniques have been proven to provide excellent performance for a variety of high energy physics applications, such as particle identification, event reconstruction and trigger operations. Recently, we developed an end-to-end deep learning approach to identify various particles using...
Autor principal: | Chudasama, Ruchi |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872294 |
Ejemplares similares
-
End-to-end deep learning inference with CMSSW via ONNX using docker
por: Chaudhari, Purva, et al.
Publicado: (2023) -
End-to-end Deep Learning Inference in CMS software framework
por: CMS Collaboration
Publicado: (2023) -
Vectorization of CMSSW offline software
por: Gartung, Patrick Elmo
Publicado: (2023) -
Performance of Heterogeneous Algorithm Scheduling in CMSSW
por: Bocci, Andrea, et al.
Publicado: (2023) -
Performance Tests of CMSSW on the CernVM
por: Petek, Marko
Publicado: (2012)