Cargando…
A high-dimensional unbinned measurement of 24 kinematic observables using a machine learning-based analysis of data recorded by the ATLAS detector
In this thesis, a precision measurement of high momentum $Z\rightarrow\mu\mu$ events in proton-proton collision data recorded during 2015–2018 by the ATLAS detector is performed. This measurement is made using a new method, MultiFold, that leverages machine learning to produce a result that is not o...
Autor principal: | Miller, Laura Stephanie |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2872436 |
Ejemplares similares
-
Determination of the W mass in the leptonic channel using an Unbinned maximum likelihood fit
por: CERN. Geneva
Publicado: (2001) -
Unbinned multivariate observables for global SMEFT analyses from machine learning
por: ter Hoeve, Jaco
Publicado: (2022) -
Measurement of the cross section in $t\bar{t}$+jets using kinematics fit method with the ATLAS detector
por: The ATLAS collaboration
Publicado: (2012) -
Jet kinematic distributions in proton-proton collisions at $\sqrt{s}=$900~GeV with the ATLAS detector
por: The ATLAS collaboration
Publicado: (2010) -
Investigating kinematic fit to improve sensitivity to Di-Higgs searches with the ATLAS detector
por: Joshi, Roshan, et al.
Publicado: (2019)