Cargando…
Applications of Quantum Computing: Quantum Machine Learning, Optimization and CERN use-cases
<!--HTML-->This talk introduces the fundamental concepts of quantum machine learning (QML). In the realm of parametrised quantum circuits, embedding of classical data and parameter optimization methods as part of the general data processing pipeline for quantum networks are being discussed. Fu...
Autor principal: | Rieger, Carla Sophie |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2873586 |
Ejemplares similares
-
Quantum Machine Learning on Quantum Data
por: Monaco, Saverio
Publicado: (2022) -
Basics of quantum computing (hands-on)
por: Chang, Su Yeon
Publicado: (2023) -
Basics of quantum computing (theory)
por: Barthe, Alice
Publicado: (2023) -
Exploring hybrid quantum-classical neural networks for particle tracking
por: Rieger, Carla
Publicado: (2020) -
Quantum Computing for High Energy Physics Applications
por: Carminati, Federico
Publicado: (2019)