Cargando…
Track reconstruction for the ATLAS Phase-II High-Level Trigger using Graph Neural Networks on FPGAs
The High-Luminosity LHC (HL-LHC) will provide an order of magnitude increase in integrated luminosity and enhance the discovery reach for new phenomena. The increased pile-up foreseen during the HL-LHC necessitates major upgrades to the ATLAS detector and trigger. The Phase-II trigger will consist o...
Autor principal: | Parajuli, Santosh |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2875128 |
Ejemplares similares
-
Track reconstruction for the ATLAS Phase-II High-Level Trigger using Graph Neural Networks on FPGAs
por: Gupta, Sachin, et al.
Publicado: (2023) -
Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs
por: Dittmeier, Sebastian, et al.
Publicado: (2023) -
Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs
por: Dittmeier, Sebastian, et al.
Publicado: (2023) -
Graph Neural Networks for Charged Particle Tracking on FPGAs
por: Elabd, Abdelrahman, et al.
Publicado: (2022) -
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
por: Heintz, Aneesh, et al.
Publicado: (2020)