Cargando…
A Method for Inferring Signal Strength Modifiers by Conditional Invertible Neural Networks
The continuous growth in model complexity in high-energy physics (HEP) collider experiments demands increasingly time-consuming model fits. As parameter inference with conditional invertible neural networks (cINNs) is very fast, the application of these versatile networks in a VH-Analysis at CMS is...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2875710 |
Ejemplares similares
-
A method for inferring signal strength modifiers by conditional invertible neural networks
por: Farkas, Mate Zoltan, et al.
Publicado: (2023) -
Heavy flavor identification at CMS with deep neural networks
por: CMS Collaboration
Publicado: (2017) -
Using a Neural Network to Approximate the Negative Log Likelihood Function
por: CMS Collaboration
Publicado: (2023) -
Boosted jet identification using particle candidates and deep neural networks
por: CMS Collaboration
Publicado: (2017) -
DeepCore: Convolutional Neural Network for high~$p_T$ jet tracking
por: CMS Collaboration
Publicado: (2019)