Cargando…
Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations. The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods. In particular, there exists a demand for a fast simulation of the neutron Z...
Autores principales: | Dubiński, Jan, Deja, Kamil, Wenzel, Sandro, Rokita, Przemysław, Trzciński, Tomasz |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2875960 |
Ejemplares similares
-
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022) -
ParticleNet: Jet Tagging via Particle Clouds
por: Qu, Huilin, et al.
Publicado: (2019) -
Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
por: Belayneh, Dawit, et al.
Publicado: (2019) -
Generative models for fast cluster simulations in the TPC for the ALICE experiment
por: Deja, Kamil, et al.
Publicado: (2019)