Cargando…
Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain
Applying graph-based techniques, and graph neural networks (GNNs) in particular, has been shown to be a promising solution to the high-occupancy track reconstruction problems posed by the upcoming HL- LHC era. Simulations of this environment present noisy, heterogeneous and ambiguous data, which pre...
Autor principal: | Torres, Heberth |
---|---|
Lenguaje: | eng |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2876457 |
Ejemplares similares
-
Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain
por: Caillou, Sylvain, et al.
Publicado: (2023) -
Performance of the GNN-based tracking for ATLAS ITk
por: Ju, Xiangyang
Publicado: (2023) -
ATLAS ITk Track Reconstruction with a GNN-based pipeline
por: Caillou, Sylvain, et al.
Publicado: (2022) -
ATLAS ITk tracking and readout performance
por: Bortoletto, Daniela
Publicado: (2022) -
Graph Neural Network Track Reconstruction for the ATLAS ITk Detector
por: Murnane, Daniel Thomas, et al.
Publicado: (2022)