Cargando…
_version_ 1780978980772380672
author Aehle, Max
Bawaj, Mateusz
Belias, Anastasios
Boldyrev, Alexey
de Castro Manzano, Pablo
Delaere, Christophe
Derkach, Denis
Donini, Julien
Dorigo, Tommaso
Edelen, Auralee
Elmer, Peter
Fanzago, Federica
Gauger, Nicolas R
Giammanco, Andrea
Glaser, Christian
Baydin, Atılım G
Heinrich, Lukas
Keidel, Ralf
Kieseler, Jan
Krause, Claudius
Lagrange, Maxime
Lamparth, Max
Layer, Lukas
Maier, Gernot
Nardi, Federico
Pettersen, Helge E S
Ramos, Alberto
Ratnikov, Fedor
Rohrich, Dieter
de Austri, Roberto Ruiz
del Arbol, Pablo Martınez Ruiz
Savchenko, Oleg
Simpson, Nathan
Strong, Giles C
Taliercio, Angela
Tosi, Mia
Ustyuzhanin, Andrey
Vischia, Pietro
Watts, Gordon
Zaraket, Haitham
author_facet Aehle, Max
Bawaj, Mateusz
Belias, Anastasios
Boldyrev, Alexey
de Castro Manzano, Pablo
Delaere, Christophe
Derkach, Denis
Donini, Julien
Dorigo, Tommaso
Edelen, Auralee
Elmer, Peter
Fanzago, Federica
Gauger, Nicolas R
Giammanco, Andrea
Glaser, Christian
Baydin, Atılım G
Heinrich, Lukas
Keidel, Ralf
Kieseler, Jan
Krause, Claudius
Lagrange, Maxime
Lamparth, Max
Layer, Lukas
Maier, Gernot
Nardi, Federico
Pettersen, Helge E S
Ramos, Alberto
Ratnikov, Fedor
Rohrich, Dieter
de Austri, Roberto Ruiz
del Arbol, Pablo Martınez Ruiz
Savchenko, Oleg
Simpson, Nathan
Strong, Giles C
Taliercio, Angela
Tosi, Mia
Ustyuzhanin, Andrey
Vischia, Pietro
Watts, Gordon
Zaraket, Haitham
author_sort Aehle, Max
collection CERN
description The coming of age of differentiable programming makes possible today to create complete computer models of experimental apparatus that include the stochastic data-generation processes, the full modeling of the reconstruction and inference procedures, and a suitably defined objective function, along with the cost of any given detector configuration, geometry and materials. This enables the end-to-end optimization of the instruments, by using techniques developed within computer science that are currently vastly exploited in fields such as fluid dynamics. The MODE Collaboration has started to consider the problem in its generality, to provide software architectures that may be useful for the optimization of experimental design. These models may be useful in a ”human in the middle” system as they provide information on the relative merit of different configurations as a continuous function of the design choices. In this short contribution we summarize the plan of studies that has been laid out, and its potential in the long term for the future of experimental studies in fundamental physics.
id cern-2877010
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-28770102023-10-26T19:54:40Zhttp://cds.cern.ch/record/2877010engAehle, MaxBawaj, MateuszBelias, AnastasiosBoldyrev, Alexeyde Castro Manzano, PabloDelaere, ChristopheDerkach, DenisDonini, JulienDorigo, TommasoEdelen, AuraleeElmer, PeterFanzago, FedericaGauger, Nicolas RGiammanco, AndreaGlaser, ChristianBaydin, Atılım GHeinrich, LukasKeidel, RalfKieseler, JanKrause, ClaudiusLagrange, MaximeLamparth, MaxLayer, LukasMaier, GernotNardi, FedericoPettersen, Helge E SRamos, AlbertoRatnikov, FedorRohrich, Dieterde Austri, Roberto Ruizdel Arbol, Pablo Martınez RuizSavchenko, OlegSimpson, NathanStrong, Giles CTaliercio, AngelaTosi, MiaUstyuzhanin, AndreyVischia, PietroWatts, GordonZaraket, HaithamExploiting Differentiable Programming for the End-to-end Optimization of DetectorsParticle Physics - ExperimentDetectors and Experimental TechniquesComputing and ComputersThe coming of age of differentiable programming makes possible today to create complete computer models of experimental apparatus that include the stochastic data-generation processes, the full modeling of the reconstruction and inference procedures, and a suitably defined objective function, along with the cost of any given detector configuration, geometry and materials. This enables the end-to-end optimization of the instruments, by using techniques developed within computer science that are currently vastly exploited in fields such as fluid dynamics. The MODE Collaboration has started to consider the problem in its generality, to provide software architectures that may be useful for the optimization of experimental design. These models may be useful in a ”human in the middle” system as they provide information on the relative merit of different configurations as a continuous function of the design choices. In this short contribution we summarize the plan of studies that has been laid out, and its potential in the long term for the future of experimental studies in fundamental physics.oai:cds.cern.ch:28770102022
spellingShingle Particle Physics - Experiment
Detectors and Experimental Techniques
Computing and Computers
Aehle, Max
Bawaj, Mateusz
Belias, Anastasios
Boldyrev, Alexey
de Castro Manzano, Pablo
Delaere, Christophe
Derkach, Denis
Donini, Julien
Dorigo, Tommaso
Edelen, Auralee
Elmer, Peter
Fanzago, Federica
Gauger, Nicolas R
Giammanco, Andrea
Glaser, Christian
Baydin, Atılım G
Heinrich, Lukas
Keidel, Ralf
Kieseler, Jan
Krause, Claudius
Lagrange, Maxime
Lamparth, Max
Layer, Lukas
Maier, Gernot
Nardi, Federico
Pettersen, Helge E S
Ramos, Alberto
Ratnikov, Fedor
Rohrich, Dieter
de Austri, Roberto Ruiz
del Arbol, Pablo Martınez Ruiz
Savchenko, Oleg
Simpson, Nathan
Strong, Giles C
Taliercio, Angela
Tosi, Mia
Ustyuzhanin, Andrey
Vischia, Pietro
Watts, Gordon
Zaraket, Haitham
Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title_full Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title_fullStr Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title_full_unstemmed Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title_short Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
title_sort exploiting differentiable programming for the end-to-end optimization of detectors
topic Particle Physics - Experiment
Detectors and Experimental Techniques
Computing and Computers
url http://cds.cern.ch/record/2877010
work_keys_str_mv AT aehlemax exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT bawajmateusz exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT beliasanastasios exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT boldyrevalexey exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT decastromanzanopablo exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT delaerechristophe exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT derkachdenis exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT doninijulien exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT dorigotommaso exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT edelenauralee exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT elmerpeter exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT fanzagofederica exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT gaugernicolasr exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT giammancoandrea exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT glaserchristian exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT baydinatılımg exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT heinrichlukas exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT keidelralf exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT kieselerjan exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT krauseclaudius exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT lagrangemaxime exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT lamparthmax exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT layerlukas exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT maiergernot exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT nardifederico exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT pettersenhelgees exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT ramosalberto exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT ratnikovfedor exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT rohrichdieter exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT deaustrirobertoruiz exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT delarbolpablomartınezruiz exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT savchenkooleg exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT simpsonnathan exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT stronggilesc exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT taliercioangela exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT tosimia exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT ustyuzhaninandrey exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT vischiapietro exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT wattsgordon exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors
AT zarakethaitham exploitingdifferentiableprogrammingfortheendtoendoptimizationofdetectors