Cargando…
Topologically nontrivial field configurations in noncommutative geometry
In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF02099460 http://cds.cern.ch/record/289502 |
_version_ | 1780888530295193600 |
---|---|
author | Grosse, H. Klimcik, C. Presnajder, P. |
author_facet | Grosse, H. Klimcik, C. Presnajder, P. |
author_sort | Grosse, H. |
collection | CERN |
description | In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes. |
id | cern-289502 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1995 |
record_format | invenio |
spelling | cern-2895022023-03-14T16:35:21Zdoi:10.1007/BF02099460http://cds.cern.ch/record/289502engGrosse, H.Klimcik, C.Presnajder, P.Topologically nontrivial field configurations in noncommutative geometryParticle Physics - TheoryIn the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes.In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes.hep-th/9510083CERN-TH-95-264UWTHPH-1995-32CERN-TH-95-264UWTHPH-1995-32oai:cds.cern.ch:2895021995-10-12 |
spellingShingle | Particle Physics - Theory Grosse, H. Klimcik, C. Presnajder, P. Topologically nontrivial field configurations in noncommutative geometry |
title | Topologically nontrivial field configurations in noncommutative geometry |
title_full | Topologically nontrivial field configurations in noncommutative geometry |
title_fullStr | Topologically nontrivial field configurations in noncommutative geometry |
title_full_unstemmed | Topologically nontrivial field configurations in noncommutative geometry |
title_short | Topologically nontrivial field configurations in noncommutative geometry |
title_sort | topologically nontrivial field configurations in noncommutative geometry |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1007/BF02099460 http://cds.cern.ch/record/289502 |
work_keys_str_mv | AT grosseh topologicallynontrivialfieldconfigurationsinnoncommutativegeometry AT klimcikc topologicallynontrivialfieldconfigurationsinnoncommutativegeometry AT presnajderp topologicallynontrivialfieldconfigurationsinnoncommutativegeometry |