Cargando…

Topologically nontrivial field configurations in noncommutative geometry

In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Grosse, H., Klimcik, C., Presnajder, P.
Lenguaje:eng
Publicado: 1995
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BF02099460
http://cds.cern.ch/record/289502
_version_ 1780888530295193600
author Grosse, H.
Klimcik, C.
Presnajder, P.
author_facet Grosse, H.
Klimcik, C.
Presnajder, P.
author_sort Grosse, H.
collection CERN
description In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes.
id cern-289502
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1995
record_format invenio
spelling cern-2895022023-03-14T16:35:21Zdoi:10.1007/BF02099460http://cds.cern.ch/record/289502engGrosse, H.Klimcik, C.Presnajder, P.Topologically nontrivial field configurations in noncommutative geometryParticle Physics - TheoryIn the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes.In the framework of noncommutative geometry we describe spinor fields with nonvanishing winding number on a truncated (fuzzy) sphere. The corresponding field theory actions conserve all basic symmetries of the standard commutative version (space isometries and global chiral symmetry), but due to the noncommutativity of the space the fields are regularized and they contain only finite number of modes.hep-th/9510083CERN-TH-95-264UWTHPH-1995-32CERN-TH-95-264UWTHPH-1995-32oai:cds.cern.ch:2895021995-10-12
spellingShingle Particle Physics - Theory
Grosse, H.
Klimcik, C.
Presnajder, P.
Topologically nontrivial field configurations in noncommutative geometry
title Topologically nontrivial field configurations in noncommutative geometry
title_full Topologically nontrivial field configurations in noncommutative geometry
title_fullStr Topologically nontrivial field configurations in noncommutative geometry
title_full_unstemmed Topologically nontrivial field configurations in noncommutative geometry
title_short Topologically nontrivial field configurations in noncommutative geometry
title_sort topologically nontrivial field configurations in noncommutative geometry
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/BF02099460
http://cds.cern.ch/record/289502
work_keys_str_mv AT grosseh topologicallynontrivialfieldconfigurationsinnoncommutativegeometry
AT klimcikc topologicallynontrivialfieldconfigurationsinnoncommutativegeometry
AT presnajderp topologicallynontrivialfieldconfigurationsinnoncommutativegeometry