Cargando…
Generalization of the Calogero-Cohn bound on the number of bound states
It is shown that for the Calogero-Cohn type upper bounds on the number of bound states of a negative spherically symmetric potential V(r), in each angular momemtum state, that is, bounds containing only the integral \int^\infty_0 |V(r)|^{1/2}dr, the condition V'(r) \geq 0 is not necessary, and...
Autores principales: | Chadan, K., Kobayashi, R., Martin, Andre, Stubbe, J. |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.531450 http://cds.cern.ch/record/290649 |
Ejemplares similares
-
The Calogero bound for non-zero angular momentum
por: Chadan, K, et al.
Publicado: (1995) -
New bounds on the number of bound states for Schrödinger operators
por: Chadan, K, et al.
Publicado: (1995) -
Bargmann and Calogero-type bounds for the Dirac equation
por: Martin, A, et al.
Publicado: (1995) -
New bounds on the number of bound states
por: Chadan, K, et al.
Publicado: (1982) -
Inequalities on the number of bound states in oscillating potentials
por: Chadan, K, et al.
Publicado: (1976)