Cargando…
Poisson-Lie T-duality: open strings and D-branes
Global issues of the Poisson-Lie T-duality are addressed. It is shown that oriented open strings propagating on a group manifold G are dual to D-brane - anti-D-brane pairs propagating on the dual group manifold \ti G. The D-branes coincide with the symplectic leaves of the standard Poisson structure...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(96)00294-8 http://cds.cern.ch/record/293181 |
Sumario: | Global issues of the Poisson-Lie T-duality are addressed. It is shown that oriented open strings propagating on a group manifold G are dual to D-brane - anti-D-brane pairs propagating on the dual group manifold \ti G. The D-branes coincide with the symplectic leaves of the standard Poisson structure induced on the dual group \ti G by the dressing action of the group G. T-duality maps the momentum of the open string into the mutual distance of the D-branes in the pair. The whole picture is then extended to the full modular space M(D) of the Poisson-Lie equivalent \si-models which is the space of all Manin triples of a given Drinfeld double.T-duality rotates the zero modes of pairs of D-branes living on targets belonging to M(D). In this more general case the D-branes are preimages of symplectic leaves in certain Poisson homogeneous spaces of their targets and, as such, they are either all even or all odd dimensional. |
---|