Cargando…
Asymptotic properties of the solutions of a differential equation appearing in QCD
We establish the asymptotic behaviour of the ratio h^\prime(0)/h(0) for \lambda\rightarrow\infty, where h(r) is a solution, vanishing at infinity, of the differential equation h^{\prime\prime}(r) = i\lambda \omega (r) h(r) on the domain 0 \leq r <\infty and \omega (r) = (1-\sqrt{r} K_1(\sqrt{r}))...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0550-3213(96)00427-0 http://cds.cern.ch/record/294878 |
Sumario: | We establish the asymptotic behaviour of the ratio h^\prime(0)/h(0) for \lambda\rightarrow\infty, where h(r) is a solution, vanishing at infinity, of the differential equation h^{\prime\prime}(r) = i\lambda \omega (r) h(r) on the domain 0 \leq r <\infty and \omega (r) = (1-\sqrt{r} K_1(\sqrt{r}))/r. Some results are valid for more general \omega's. |
---|