Cargando…

Trilinear gauge boson couplings in the MSSM

We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders...

Descripción completa

Detalles Bibliográficos
Autores principales: Argyres, E.N., Lahanas, A.B., Papadopoulos, C.G., Spanos, V.C.
Lenguaje:eng
Publicado: 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0370-2693(96)00696-X
http://cds.cern.ch/record/299530
_version_ 1780889375032213504
author Argyres, E.N.
Lahanas, A.B.
Papadopoulos, C.G.
Spanos, V.C.
author_facet Argyres, E.N.
Lahanas, A.B.
Papadopoulos, C.G.
Spanos, V.C.
author_sort Argyres, E.N.
collection CERN
description We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.
id cern-299530
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1996
record_format invenio
spelling cern-2995302023-03-14T18:58:43Zdoi:10.1016/0370-2693(96)00696-Xhttp://cds.cern.ch/record/299530engArgyres, E.N.Lahanas, A.B.Papadopoulos, C.G.Spanos, V.C.Trilinear gauge boson couplings in the MSSMParticle Physics - PhenomenologyWe study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.We study the C and P even WW\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \sqrt{s} < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall off behaviour, in accord with unitarity requirements, getting smaller,in most cases, by almost an order of magnitude already at energies \sqrt{s} 0.5 TeV.We study the C and P even WWγ and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W 's are on their mass shell. We find that for energies s  q 2 ⩽ 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h 0 , whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the neutralinos and charginos are sensitive to the input value for the soft gaugino mass M 1 2 , being more pronounced for values M 1 2 < 100 GeV . In this case and in the unphysical region, 0 < s < 2M W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2M W < s < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall-off behaviour, in accord with unitarity requirements, getting smaller, in most cases, by almost an order of magnitude already at energies s ≈ 0.5 TeV.hep-ph/9603362UA-NPPS-18-Boai:cds.cern.ch:2995301996-03-20
spellingShingle Particle Physics - Phenomenology
Argyres, E.N.
Lahanas, A.B.
Papadopoulos, C.G.
Spanos, V.C.
Trilinear gauge boson couplings in the MSSM
title Trilinear gauge boson couplings in the MSSM
title_full Trilinear gauge boson couplings in the MSSM
title_fullStr Trilinear gauge boson couplings in the MSSM
title_full_unstemmed Trilinear gauge boson couplings in the MSSM
title_short Trilinear gauge boson couplings in the MSSM
title_sort trilinear gauge boson couplings in the mssm
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1016/0370-2693(96)00696-X
http://cds.cern.ch/record/299530
work_keys_str_mv AT argyresen trilineargaugebosoncouplingsinthemssm
AT lahanasab trilineargaugebosoncouplingsinthemssm
AT papadopouloscg trilineargaugebosoncouplingsinthemssm
AT spanosvc trilineargaugebosoncouplingsinthemssm