Cargando…
Universal aspects of string propagation on curved backgrounds
String propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.54.3995 http://cds.cern.ch/record/302139 |
Sumario: | String propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is governed by the coset conformal field theory SO(D-1)/SO(D-2), which is universal irrespectively of the particular WZW model. The same holds for string propagation on D-dimensional flat space. The integration of the corresponding Gauss-Codazzi equations requires the introduction of (non-Abelian) parafermions in differential geometry. |
---|