Cargando…

Universal aspects of string propagation on curved backgrounds

String propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakas, Ioannis, Sfetsos, K
Lenguaje:eng
Publicado: 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.54.3995
http://cds.cern.ch/record/302139
_version_ 1780889560398430208
author Bakas, Ioannis
Sfetsos, K
author_facet Bakas, Ioannis
Sfetsos, K
author_sort Bakas, Ioannis
collection CERN
description String propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is governed by the coset conformal field theory SO(D-1)/SO(D-2), which is universal irrespectively of the particular WZW model. The same holds for string propagation on D-dimensional flat space. The integration of the corresponding Gauss-Codazzi equations requires the introduction of (non-Abelian) parafermions in differential geometry.
id cern-302139
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1996
record_format invenio
spelling cern-3021392019-09-30T06:29:59Zdoi:10.1103/PhysRevD.54.3995http://cds.cern.ch/record/302139engBakas, IoannisSfetsos, KUniversal aspects of string propagation on curved backgroundsParticle Physics - TheoryString propagation on D-dimensional curved backgrounds with Lorentzian signature is formulated as a geometrical problem of embedding surfaces. When the spatial part of the background corresponds to a general WZW model for a compact group, the classical dynamics of the physical degrees of freedom is governed by the coset conformal field theory SO(D-1)/SO(D-2), which is universal irrespectively of the particular WZW model. The same holds for string propagation on D-dimensional flat space. The integration of the corresponding Gauss-Codazzi equations requires the introduction of (non-Abelian) parafermions in differential geometry.hep-th/9604195CERN-TH-96-089THU-96-19oai:cds.cern.ch:3021391996-04-30
spellingShingle Particle Physics - Theory
Bakas, Ioannis
Sfetsos, K
Universal aspects of string propagation on curved backgrounds
title Universal aspects of string propagation on curved backgrounds
title_full Universal aspects of string propagation on curved backgrounds
title_fullStr Universal aspects of string propagation on curved backgrounds
title_full_unstemmed Universal aspects of string propagation on curved backgrounds
title_short Universal aspects of string propagation on curved backgrounds
title_sort universal aspects of string propagation on curved backgrounds
topic Particle Physics - Theory
url https://dx.doi.org/10.1103/PhysRevD.54.3995
http://cds.cern.ch/record/302139
work_keys_str_mv AT bakasioannis universalaspectsofstringpropagationoncurvedbackgrounds
AT sfetsosk universalaspectsofstringpropagationoncurvedbackgrounds