Cargando…
Superconformal Ward Identities and N=2 Yang-Mills Theory
A reformulation of the superconformal Ward identities that combines all the superconformal currents and the associated parameters in one multiplet is given for theories with rigid N=1 or N=2 supersymmetry. This form of the Ward Identities is applied to spontaneously broken N=2 Yang-Mills theory and...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0550-3213(96)00628-1 http://cds.cern.ch/record/307999 |
Sumario: | A reformulation of the superconformal Ward identities that combines all the superconformal currents and the associated parameters in one multiplet is given for theories with rigid N=1 or N=2 supersymmetry. This form of the Ward Identities is applied to spontaneously broken N=2 Yang-Mills theory and used to derive a condition on the low energy effective action. This condition is satisfied by the solution proposed by Seiberg and Witten. |
---|