Cargando…

Elliptic Genera of Symmetric Products and Second Quantized Strings

In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \times S^1$. The generating function of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dijkgraaf, Robbert, Moore, Gregory W., Verlinde, Erik P., Verlinde, Herman L.
Lenguaje:eng
Publicado: 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1007/s002200050087
http://cds.cern.ch/record/308863
Descripción
Sumario:In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.