Cargando…
Exceptional SW Geometry from ALE Fibrations
We show that the genus 34 Seiberg-Witten curve underlying $N=2$ Yang-Mills theory with gauge group $E_6$ yields physically equivalent results to the manifold obtained by fibration of the $E_6$ ALE singularity. This reconciles a puzzle raised by $N=2$ string duality.
Autores principales: | Lerche, W., Warner, N.P. |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0370-2693(98)00106-3 http://cds.cern.ch/record/309615 |
Ejemplares similares
-
Quartic Gauge Couplings from $K$3 Geometry
por: Lerche, W., et al.
Publicado: (1998) -
D-Branes on K3-Fibrations
por: Kaste, P., et al.
Publicado: (1999) -
K3-fibrations and heterotic-type II string duality
por: Klemm, A., et al.
Publicado: (1995) -
N=1 Special Geometry, Mixed Hodge Variations and Toric Geometry
por: Lerche, W., et al.
Publicado: (2002) -
D-Branes on ALE Spaces and the ADE Classification of Conformal Field Theories
por: Lerche, W., et al.
Publicado: (2000)