Cargando…
$F^{4}$ Terms in N=4 String Vacua
We discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the hete...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0920-5632(97)00079-0 http://cds.cern.ch/record/315610 |
_version_ | 1780890352766418944 |
---|---|
author | Bachas, C. Kiritsis, E. |
author_facet | Bachas, C. Kiritsis, E. |
author_sort | Bachas, C. |
collection | CERN |
description | We discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side. |
id | cern-315610 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1996 |
record_format | invenio |
spelling | cern-3156102019-09-30T06:29:59Zdoi:10.1016/S0920-5632(97)00079-0http://cds.cern.ch/record/315610engBachas, C.Kiritsis, E.$F^{4}$ Terms in N=4 String VacuaParticle Physics - TheoryWe discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side.We discuss $F_{\mu\nu}~4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side.hep-th/9611205CERN-TH-96-153CERN-TH-96-153oai:cds.cern.ch:3156101996-11-25 |
spellingShingle | Particle Physics - Theory Bachas, C. Kiritsis, E. $F^{4}$ Terms in N=4 String Vacua |
title | $F^{4}$ Terms in N=4 String Vacua |
title_full | $F^{4}$ Terms in N=4 String Vacua |
title_fullStr | $F^{4}$ Terms in N=4 String Vacua |
title_full_unstemmed | $F^{4}$ Terms in N=4 String Vacua |
title_short | $F^{4}$ Terms in N=4 String Vacua |
title_sort | $f^{4}$ terms in n=4 string vacua |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1016/S0920-5632(97)00079-0 http://cds.cern.ch/record/315610 |
work_keys_str_mv | AT bachasc f4termsinn4stringvacua AT kiritsise f4termsinn4stringvacua |