Cargando…

$F^{4}$ Terms in N=4 String Vacua

We discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the hete...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachas, C., Kiritsis, E.
Lenguaje:eng
Publicado: 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0920-5632(97)00079-0
http://cds.cern.ch/record/315610
_version_ 1780890352766418944
author Bachas, C.
Kiritsis, E.
author_facet Bachas, C.
Kiritsis, E.
author_sort Bachas, C.
collection CERN
description We discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side.
id cern-315610
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1996
record_format invenio
spelling cern-3156102019-09-30T06:29:59Zdoi:10.1016/S0920-5632(97)00079-0http://cds.cern.ch/record/315610engBachas, C.Kiritsis, E.$F^{4}$ Terms in N=4 String VacuaParticle Physics - TheoryWe discuss $F_{\mu\nu}^4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side.We discuss $F_{\mu\nu}~4$ terms in toroidal compactifications of type-I and heterotic SO(32) string theory. We give a simple argument why only short BPS multiplets contribute to these terms at one loop, and verify heterotic-type-I duality to this order. Assuming exact duality, we exhibit in the heterotic calculation non-zero terms that are two-loop, three-loop and non-perturbative on the type-I side.hep-th/9611205CERN-TH-96-153CERN-TH-96-153oai:cds.cern.ch:3156101996-11-25
spellingShingle Particle Physics - Theory
Bachas, C.
Kiritsis, E.
$F^{4}$ Terms in N=4 String Vacua
title $F^{4}$ Terms in N=4 String Vacua
title_full $F^{4}$ Terms in N=4 String Vacua
title_fullStr $F^{4}$ Terms in N=4 String Vacua
title_full_unstemmed $F^{4}$ Terms in N=4 String Vacua
title_short $F^{4}$ Terms in N=4 String Vacua
title_sort $f^{4}$ terms in n=4 string vacua
topic Particle Physics - Theory
url https://dx.doi.org/10.1016/S0920-5632(97)00079-0
http://cds.cern.ch/record/315610
work_keys_str_mv AT bachasc f4termsinn4stringvacua
AT kiritsise f4termsinn4stringvacua