Cargando…

Accurate measurement of $F_{2}^{\rm d}/F_{2}^{\rm p}$ and $R^{\rm d} - R^{\rm p}$

Results are presented for $F_{2}^{\rm d}/F_{2}^{\rm p}$ and $R^{\rm d} - R^{\rm p}$ from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference $R^{\rm d} - R^{\rm p}$, determined in the range $0.002<x<0.4$ at...

Descripción completa

Detalles Bibliográficos
Autores principales: Arneodo, M., Arvidson, A., Badełek, B., Ballintijn, M., Baum, G., Beaufays, J., Bird, I.G., Björkholm, P., Botje, M., Broggini, C., Brückner, W., Brüll, A., Burger, W.J., Ciborowski, J., van Dantzig, R., Dyring, A., Engelien, H., Ferrero, M.I., Fluri, L., Gaul, U., Granier, T., Grosse-Perdekamp, M., von Harrach, D., van der Heijden, M., Heusch, C., Ingram, Q., de Jong, M., Kabuβ, E.M., Kaiser, R., Ketel, T.J., Klein, F., Kullander, S., Landgraf, U., Lindqvist, T., Mallot, G.K., Mariotti, C., van Middelkoop, G., Milsztajn, A., Mizuno, Y., Most, A., Mücklich, A., Nassalski, J., Nowotny, D., Oberski, J., Paić, A., Peroni, C., Povh, B., Prytz, K., Rieger, R., Rith, K., Röhrich, K., Rondio, E., Ropelewski, L., Sandacz, A., Sanders, D., Scholz, C., Seitz, R., Sever, F., Shibata, T.-A., Siebler, M., Simon, A., Staiano, A., Szleper, M., Tłaczała, W., Tzamouranis, Y., Virchaux, M., Vuilleumier, J.L., Walcher, T., Windmolders, R., Witzmann, A., Zaremba, K., Zetsche, F.
Lenguaje:eng
Publicado: 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(96)00673-6
http://cds.cern.ch/record/315894
Descripción
Sumario:Results are presented for $F_{2}^{\rm d}/F_{2}^{\rm p}$ and $R^{\rm d} - R^{\rm p}$ from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference $R^{\rm d} - R^{\rm p}$, determined in the range $0.002<x<0.4$ at an average $Q^{2}$ of 5 GeV$^{2}$, is compatible with zero. The $x$ and $Q^{2}$ dependence of $F_{2}^{\rm d}/F_{2}^{\rm p}$ was measured in the kinematic range $0.001<x<0.8$ and $0.1<Q^{2}<145$ GeV$^{2}$ with small statistical and systematic errors. For $x>0.1$ the ratio decreases with $Q^{2}$.