Cargando…
Remarks on Finite W Algebras
The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G=so(4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach which can be compared to the usual in...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF01690330 http://cds.cern.ch/record/316430 |
Sumario: | The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G=so(4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach which can be compared to the usual induced representation technique. When G=sp(2,R) or sp(4,R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) level k is briefly presented. This mini review is based on invited talks presented by P. Sorba at the ``Vth International Colloquium on Quantum Groups and Integrable Systems'', Prague (Czech Republic), June 1996; ``Extended and Quantum Algebras and their Applications to Physics'', Tianjin (China), August 1996; ``Selected Topics of Theoretical and Modern Mathematical Physics'', Tbilisi (Georgia), September 1996; to be published in the Proceedings. |
---|