Cargando…
Wave Dynamical Chaos in Superconducting Microwave Cavities
During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equ...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1997
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/318351 |
Sumario: | During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems. |
---|