Cargando…

Phase transitions precipitated by solitosynthesis

Solitosynthesis of Q-balls in the false vacuum can result in a phase transition of a new kind. Formation and subsequent growth of Q-balls via the charge accretion proceeds until the solitons reach a critical charge, at which point it becomes energetically favorable for the Q-ball interior to expand...

Descripción completa

Detalles Bibliográficos
Autor principal: Kusenko, Alexander
Lenguaje:eng
Publicado: 1997
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0370-2693(97)00700-4
http://cds.cern.ch/record/326311
Descripción
Sumario:Solitosynthesis of Q-balls in the false vacuum can result in a phase transition of a new kind. Formation and subsequent growth of Q-balls via the charge accretion proceeds until the solitons reach a critical charge, at which point it becomes energetically favorable for the Q-ball interior to expand filling space with the true vacuum phase. Solitosynthesis can destabilize a false vacuum even when the tunneling rate is negligible. In models with low-energy supersymmetry, where the Q-balls associated with baryon and lepton number conservation are generically present, solitosynthesis can precipitate transitions between the vacua with different VEV's of squarks and sleptons.