Cargando…
Physics with $e^{+}e^{-}$ Linear Colliders
We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0370-1573(97)00086-0 http://cds.cern.ch/record/326758 |
_version_ | 1780890962064572416 |
---|---|
author | Accomando, E. Andreazza, A. Anlauf, H. Ballestrero, A. Barklow, T. Bartels, J. Bartl, A. Battaglia, M. Beenakker, W. Bélanger, G. Bernreuther, W. Biebel, J. Binnewies, J. Blümlein, J. Boos, E. Borzumati, F. Boudjema, F. Brandenburg, A. Bussey, P.J. Cacciari, M. Casalbuoni, R. Corsetti, A. De Curtis, S. Cuypers, F. Daskalakis, G. Deandrea, A. Denner, A. Diehl, M. Dittmaier, S. Djouadi, A. Dominici, D. Dreiner, H. Eberl, H. Ellwanger, U. Engel, R. Flöttmann, K. Franz, H. Gajdosik, T. Gatto, R. Genten, H. Godbole, R. Gounaris, G. Greco, M. Grivaz, J.-F. Guetta, D. Haidt, D. Harlander, R. He, H.J. Hollik, W. Huitu, K. Igo-Kemenes, P. Ilyin, V. Janot, P. Jegerlehner, F. Jeżabek, M. Jim, B. Kalinowski, J. Kilian, W. Kim, B.R. Kleinwort, T. Kniehl, B.A. Krämer, M. Kramer, G. Kraml, S. Krause, A. Krawczyk, M. Kryukov, A. Kühn, J.H. Kyriakis, A. Leike, A. Lotter, H. Maalampi, J. Majerotto, W. Markou, C. Martinez, M. Martyn, U. Mele, B. Miller, D.J. Miquel, R. Nippe, A. Nowak, H. Ohl, T. Osland, P. Overmann, P. Pancheri, G. Pankov, A.A. Papadopoulos, C.G. Paver, N. Pietila, A. Peter, M. Pizzio, M. Plehn, T. Pohl, M. Polonsky, N. Porod, W. Pukhov, A. Raidal, M. Riemann, S. Riemann, T. Riesselmann, K. Riu, I. De Roeck, A. Rosiek, J. Rückl, R. Schreiber, H.J. Schulte, D. Settles, R. Shanidze, R. Shichanin, S. Simopoulou, E. Sjöstrand, T. Smith, J. Sopczak, A. Spiesberger, H. Teubner, T. Troncon, C. Vander Velde, C. Vogt, A. Vuopionper, R. Wagner, A. Ward, J. Weber, M. Wiik, B.H. Wilson, G.W. Zerwas, P.M. |
author_facet | Accomando, E. Andreazza, A. Anlauf, H. Ballestrero, A. Barklow, T. Bartels, J. Bartl, A. Battaglia, M. Beenakker, W. Bélanger, G. Bernreuther, W. Biebel, J. Binnewies, J. Blümlein, J. Boos, E. Borzumati, F. Boudjema, F. Brandenburg, A. Bussey, P.J. Cacciari, M. Casalbuoni, R. Corsetti, A. De Curtis, S. Cuypers, F. Daskalakis, G. Deandrea, A. Denner, A. Diehl, M. Dittmaier, S. Djouadi, A. Dominici, D. Dreiner, H. Eberl, H. Ellwanger, U. Engel, R. Flöttmann, K. Franz, H. Gajdosik, T. Gatto, R. Genten, H. Godbole, R. Gounaris, G. Greco, M. Grivaz, J.-F. Guetta, D. Haidt, D. Harlander, R. He, H.J. Hollik, W. Huitu, K. Igo-Kemenes, P. Ilyin, V. Janot, P. Jegerlehner, F. Jeżabek, M. Jim, B. Kalinowski, J. Kilian, W. Kim, B.R. Kleinwort, T. Kniehl, B.A. Krämer, M. Kramer, G. Kraml, S. Krause, A. Krawczyk, M. Kryukov, A. Kühn, J.H. Kyriakis, A. Leike, A. Lotter, H. Maalampi, J. Majerotto, W. Markou, C. Martinez, M. Martyn, U. Mele, B. Miller, D.J. Miquel, R. Nippe, A. Nowak, H. Ohl, T. Osland, P. Overmann, P. Pancheri, G. Pankov, A.A. Papadopoulos, C.G. Paver, N. Pietila, A. Peter, M. Pizzio, M. Plehn, T. Pohl, M. Polonsky, N. Porod, W. Pukhov, A. Raidal, M. Riemann, S. Riemann, T. Riesselmann, K. Riu, I. De Roeck, A. Rosiek, J. Rückl, R. Schreiber, H.J. Schulte, D. Settles, R. Shanidze, R. Shichanin, S. Simopoulou, E. Sjöstrand, T. Smith, J. Sopczak, A. Spiesberger, H. Teubner, T. Troncon, C. Vander Velde, C. Vogt, A. Vuopionper, R. Wagner, A. Ward, J. Weber, M. Wiik, B.H. Wilson, G.W. Zerwas, P.M. |
author_sort | Accomando, E. |
collection | CERN |
description | We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines. |
id | cern-326758 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1997 |
record_format | invenio |
spelling | cern-3267582023-09-23T06:08:07Zdoi:10.1016/S0370-1573(97)00086-0http://cds.cern.ch/record/326758engAccomando, E.Andreazza, A.Anlauf, H.Ballestrero, A.Barklow, T.Bartels, J.Bartl, A.Battaglia, M.Beenakker, W.Bélanger, G.Bernreuther, W.Biebel, J.Binnewies, J.Blümlein, J.Boos, E.Borzumati, F.Boudjema, F.Brandenburg, A.Bussey, P.J.Cacciari, M.Casalbuoni, R.Corsetti, A.De Curtis, S.Cuypers, F.Daskalakis, G.Deandrea, A.Denner, A.Diehl, M.Dittmaier, S.Djouadi, A.Dominici, D.Dreiner, H.Eberl, H.Ellwanger, U.Engel, R.Flöttmann, K.Franz, H.Gajdosik, T.Gatto, R.Genten, H.Godbole, R.Gounaris, G.Greco, M.Grivaz, J.-F.Guetta, D.Haidt, D.Harlander, R.He, H.J.Hollik, W.Huitu, K.Igo-Kemenes, P.Ilyin, V.Janot, P.Jegerlehner, F.Jeżabek, M.Jim, B.Kalinowski, J.Kilian, W.Kim, B.R.Kleinwort, T.Kniehl, B.A.Krämer, M.Kramer, G.Kraml, S.Krause, A.Krawczyk, M.Kryukov, A.Kühn, J.H.Kyriakis, A.Leike, A.Lotter, H.Maalampi, J.Majerotto, W.Markou, C.Martinez, M.Martyn, U.Mele, B.Miller, D.J.Miquel, R.Nippe, A.Nowak, H.Ohl, T.Osland, P.Overmann, P.Pancheri, G.Pankov, A.A.Papadopoulos, C.G.Paver, N.Pietila, A.Peter, M.Pizzio, M.Plehn, T.Pohl, M.Polonsky, N.Porod, W.Pukhov, A.Raidal, M.Riemann, S.Riemann, T.Riesselmann, K.Riu, I.De Roeck, A.Rosiek, J.Rückl, R.Schreiber, H.J.Schulte, D.Settles, R.Shanidze, R.Shichanin, S.Simopoulou, E.Sjöstrand, T.Smith, J.Sopczak, A.Spiesberger, H.Teubner, T.Troncon, C.Vander Velde, C.Vogt, A.Vuopionper, R.Wagner, A.Ward, J.Weber, M.Wiik, B.H.Wilson, G.W.Zerwas, P.M.Physics with $e^{+}e^{-}$ Linear CollidersParticle Physics - PhenomenologyWe describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines.We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines.We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines.We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines.We describe the physics potential of $e^+e^-$ linear colliders in this report. These machines are planned to operate in the first phase at a center-of --mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of $e^+e^-$ linear colliders and the high-precision with which the properties of particles and their interactions can be analysed, define an exciting physics programme complementary to hadron machines.hep-ph/9705442SLAC-PUB-9779DESY-97-100DESY-97-100oai:cds.cern.ch:3267581997-05-28 |
spellingShingle | Particle Physics - Phenomenology Accomando, E. Andreazza, A. Anlauf, H. Ballestrero, A. Barklow, T. Bartels, J. Bartl, A. Battaglia, M. Beenakker, W. Bélanger, G. Bernreuther, W. Biebel, J. Binnewies, J. Blümlein, J. Boos, E. Borzumati, F. Boudjema, F. Brandenburg, A. Bussey, P.J. Cacciari, M. Casalbuoni, R. Corsetti, A. De Curtis, S. Cuypers, F. Daskalakis, G. Deandrea, A. Denner, A. Diehl, M. Dittmaier, S. Djouadi, A. Dominici, D. Dreiner, H. Eberl, H. Ellwanger, U. Engel, R. Flöttmann, K. Franz, H. Gajdosik, T. Gatto, R. Genten, H. Godbole, R. Gounaris, G. Greco, M. Grivaz, J.-F. Guetta, D. Haidt, D. Harlander, R. He, H.J. Hollik, W. Huitu, K. Igo-Kemenes, P. Ilyin, V. Janot, P. Jegerlehner, F. Jeżabek, M. Jim, B. Kalinowski, J. Kilian, W. Kim, B.R. Kleinwort, T. Kniehl, B.A. Krämer, M. Kramer, G. Kraml, S. Krause, A. Krawczyk, M. Kryukov, A. Kühn, J.H. Kyriakis, A. Leike, A. Lotter, H. Maalampi, J. Majerotto, W. Markou, C. Martinez, M. Martyn, U. Mele, B. Miller, D.J. Miquel, R. Nippe, A. Nowak, H. Ohl, T. Osland, P. Overmann, P. Pancheri, G. Pankov, A.A. Papadopoulos, C.G. Paver, N. Pietila, A. Peter, M. Pizzio, M. Plehn, T. Pohl, M. Polonsky, N. Porod, W. Pukhov, A. Raidal, M. Riemann, S. Riemann, T. Riesselmann, K. Riu, I. De Roeck, A. Rosiek, J. Rückl, R. Schreiber, H.J. Schulte, D. Settles, R. Shanidze, R. Shichanin, S. Simopoulou, E. Sjöstrand, T. Smith, J. Sopczak, A. Spiesberger, H. Teubner, T. Troncon, C. Vander Velde, C. Vogt, A. Vuopionper, R. Wagner, A. Ward, J. Weber, M. Wiik, B.H. Wilson, G.W. Zerwas, P.M. Physics with $e^{+}e^{-}$ Linear Colliders |
title | Physics with $e^{+}e^{-}$ Linear Colliders |
title_full | Physics with $e^{+}e^{-}$ Linear Colliders |
title_fullStr | Physics with $e^{+}e^{-}$ Linear Colliders |
title_full_unstemmed | Physics with $e^{+}e^{-}$ Linear Colliders |
title_short | Physics with $e^{+}e^{-}$ Linear Colliders |
title_sort | physics with $e^{+}e^{-}$ linear colliders |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/S0370-1573(97)00086-0 http://cds.cern.ch/record/326758 |
work_keys_str_mv | AT accomandoe physicswitheelinearcolliders AT andreazzaa physicswitheelinearcolliders AT anlaufh physicswitheelinearcolliders AT ballestreroa physicswitheelinearcolliders AT barklowt physicswitheelinearcolliders AT bartelsj physicswitheelinearcolliders AT bartla physicswitheelinearcolliders AT battagliam physicswitheelinearcolliders AT beenakkerw physicswitheelinearcolliders AT belangerg physicswitheelinearcolliders AT bernreutherw physicswitheelinearcolliders AT biebelj physicswitheelinearcolliders AT binnewiesj physicswitheelinearcolliders AT blumleinj physicswitheelinearcolliders AT boose physicswitheelinearcolliders AT borzumatif physicswitheelinearcolliders AT boudjemaf physicswitheelinearcolliders AT brandenburga physicswitheelinearcolliders AT busseypj physicswitheelinearcolliders AT cacciarim physicswitheelinearcolliders AT casalbuonir physicswitheelinearcolliders AT corsettia physicswitheelinearcolliders AT decurtiss physicswitheelinearcolliders AT cuypersf physicswitheelinearcolliders AT daskalakisg physicswitheelinearcolliders AT deandreaa physicswitheelinearcolliders AT dennera physicswitheelinearcolliders AT diehlm physicswitheelinearcolliders AT dittmaiers physicswitheelinearcolliders AT djouadia physicswitheelinearcolliders AT dominicid physicswitheelinearcolliders AT dreinerh physicswitheelinearcolliders AT eberlh physicswitheelinearcolliders AT ellwangeru physicswitheelinearcolliders AT engelr physicswitheelinearcolliders AT flottmannk physicswitheelinearcolliders AT franzh physicswitheelinearcolliders AT gajdosikt physicswitheelinearcolliders AT gattor physicswitheelinearcolliders AT gentenh physicswitheelinearcolliders AT godboler physicswitheelinearcolliders AT gounarisg physicswitheelinearcolliders AT grecom physicswitheelinearcolliders AT grivazjf physicswitheelinearcolliders AT guettad physicswitheelinearcolliders AT haidtd physicswitheelinearcolliders AT harlanderr physicswitheelinearcolliders AT hehj physicswitheelinearcolliders AT hollikw physicswitheelinearcolliders AT huituk physicswitheelinearcolliders AT igokemenesp physicswitheelinearcolliders AT ilyinv physicswitheelinearcolliders AT janotp physicswitheelinearcolliders AT jegerlehnerf physicswitheelinearcolliders AT jezabekm physicswitheelinearcolliders AT jimb physicswitheelinearcolliders AT kalinowskij physicswitheelinearcolliders AT kilianw physicswitheelinearcolliders AT kimbr physicswitheelinearcolliders AT kleinwortt physicswitheelinearcolliders AT kniehlba physicswitheelinearcolliders AT kramerm physicswitheelinearcolliders AT kramerg physicswitheelinearcolliders AT kramls physicswitheelinearcolliders AT krausea physicswitheelinearcolliders AT krawczykm physicswitheelinearcolliders AT kryukova physicswitheelinearcolliders AT kuhnjh physicswitheelinearcolliders AT kyriakisa physicswitheelinearcolliders AT leikea physicswitheelinearcolliders AT lotterh physicswitheelinearcolliders AT maalampij physicswitheelinearcolliders AT majerottow physicswitheelinearcolliders AT markouc physicswitheelinearcolliders AT martinezm physicswitheelinearcolliders AT martynu physicswitheelinearcolliders AT meleb physicswitheelinearcolliders AT millerdj physicswitheelinearcolliders AT miquelr physicswitheelinearcolliders AT nippea physicswitheelinearcolliders AT nowakh physicswitheelinearcolliders AT ohlt physicswitheelinearcolliders AT oslandp physicswitheelinearcolliders AT overmannp physicswitheelinearcolliders AT pancherig physicswitheelinearcolliders AT pankovaa physicswitheelinearcolliders AT papadopouloscg physicswitheelinearcolliders AT pavern physicswitheelinearcolliders AT pietilaa physicswitheelinearcolliders AT peterm physicswitheelinearcolliders AT pizziom physicswitheelinearcolliders AT plehnt physicswitheelinearcolliders AT pohlm physicswitheelinearcolliders AT polonskyn physicswitheelinearcolliders AT porodw physicswitheelinearcolliders AT pukhova physicswitheelinearcolliders AT raidalm physicswitheelinearcolliders AT riemanns physicswitheelinearcolliders AT riemannt physicswitheelinearcolliders AT riesselmannk physicswitheelinearcolliders AT riui physicswitheelinearcolliders AT deroecka physicswitheelinearcolliders AT rosiekj physicswitheelinearcolliders AT rucklr physicswitheelinearcolliders AT schreiberhj physicswitheelinearcolliders AT schulted physicswitheelinearcolliders AT settlesr physicswitheelinearcolliders AT shanidzer physicswitheelinearcolliders AT shichanins physicswitheelinearcolliders AT simopouloue physicswitheelinearcolliders AT sjostrandt physicswitheelinearcolliders AT smithj physicswitheelinearcolliders AT sopczaka physicswitheelinearcolliders AT spiesbergerh physicswitheelinearcolliders AT teubnert physicswitheelinearcolliders AT tronconc physicswitheelinearcolliders AT vanderveldec physicswitheelinearcolliders AT vogta physicswitheelinearcolliders AT vuopionperr physicswitheelinearcolliders AT wagnera physicswitheelinearcolliders AT wardj physicswitheelinearcolliders AT weberm physicswitheelinearcolliders AT wiikbh physicswitheelinearcolliders AT wilsongw physicswitheelinearcolliders AT zerwaspm physicswitheelinearcolliders |