Cargando…
A Wilson-Yukawa model with undoubled chiral fermions in 2D
We consider the fermion spectrum in the strong coupling vortex phase of a lattice fermion-scalar model with a global $U(1)_L\times U(1)_R$, in 2D, in the context of a recently proposed two-cutoff lattice formulation. The fermion doublers are made massive by a strong Wilson-Yukawa coupling, but in co...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0550-3213(97)00691-3 http://cds.cern.ch/record/328797 |
Sumario: | We consider the fermion spectrum in the strong coupling vortex phase of a lattice fermion-scalar model with a global $U(1)_L\times U(1)_R$, in 2D, in the context of a recently proposed two-cutoff lattice formulation. The fermion doublers are made massive by a strong Wilson-Yukawa coupling, but in contrast with the standard formulation of these models, in which the light fermion spectrum was found to be massive and vectorlike, we find massless undoubled fermions with chiral quantum numbers at finite lattice spacing. When the global symmetry is gauged, this model is expected to give rise to a chiral gauge theory. |
---|