Cargando…

Higher-order estimates of the chromomagnetic moment of a heavy quark

The leading beta_0^(n-1) alpha_s^n terms in the Wilson coefficient and anomalous dimension of the chromomagnetic operator in the heavy-quark effective Lagrangian are summed to all orders of perturbation theory. The perturbation series for the anomalous dimension is well behaved, while that for the W...

Descripción completa

Detalles Bibliográficos
Autores principales: Grozin, A G, Neubert, M
Lenguaje:eng
Publicado: 1997
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(97)80014-4
http://cds.cern.ch/record/330210
Descripción
Sumario:The leading beta_0^(n-1) alpha_s^n terms in the Wilson coefficient and anomalous dimension of the chromomagnetic operator in the heavy-quark effective Lagrangian are summed to all orders of perturbation theory. The perturbation series for the anomalous dimension is well behaved, while that for the Wilson coefficient exhibits a divergent behaviour already in low orders, caused by a nearby infrared renormalon singularity. The resulting ambiguity is commensurate with terms of order 1/m^2 in the effective Lagrangian, whose corresponding ultraviolet renormalons are identified. An excellent approximation for the scheme-invariant Wilson coefficient at next-to-next-to-leading order in renormalization-group improved perturbation theory is obtained.