Cargando…
A Guide to Precision Calculations in Dyson's Hierarchical Scalar Field Theory
The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson&...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.57.6326 http://cds.cern.ch/record/334566 |
Sumario: | The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson's hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green's functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cut-off limit is obtained by letting beta reach a critical value beta_c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (beta_c -beta)^{-1} near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when beta -> beta_c, this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like (Ln(beta_c -beta))^{-1} when D=4. |
---|