Cargando…

The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)

The lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cameron, W, Dambre, P, Kurtyka, T, Parma, Vittorio, Renaglia, T, Rifflet, J M, Rohmig, P, Skoczen, Blazej, Tortschanoff, Theodor, Trilhe, P, Védrine, P, Vincent, D
Lenguaje:eng
Publicado: 1998
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-1-4757-9047-4_49
http://cds.cern.ch/record/344977
_version_ 1780891757606600704
author Cameron, W
Dambre, P
Kurtyka, T
Parma, Vittorio
Renaglia, T
Rifflet, J M
Rohmig, P
Skoczen, Blazej
Tortschanoff, Theodor
Trilhe, P
Védrine, P
Vincent, D
author_facet Cameron, W
Dambre, P
Kurtyka, T
Parma, Vittorio
Renaglia, T
Rifflet, J M
Rohmig, P
Skoczen, Blazej
Tortschanoff, Theodor
Trilhe, P
Védrine, P
Vincent, D
author_sort Cameron, W
collection CERN
description The lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of an SSS contains the twin aperture high-gradient superconducting quadrupole and two pairs of superconducting corrector magnets, operating in pressurized helium II at 1.9 K. Components for isolating cryostat insulation vacuum, and the cryogenic supply lines, have to be foreseen. Special emphasis is given to the design changes of the SSS following adoption of an external cryogenic supply line (QRL). A jumper connection connects the SSS to the QRL, linking all the cryogenic tubes necessary for the local full-cell cooling loop [at every second SSS]. The jumper is connected to one end of the standard cryostat section via the cryogenic service module, which also houses beam diagnostics, current feedthroughs, and instrumentation capillaries. The conceptual design fulfilling the tight requirements of magnet alignment precision and cryogenic performance are described. Construction details, aimed at minimizing costs of series manufacturing and assembly, while ensuring the high quality of this complex accelerator component, are given.
id cern-344977
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1998
record_format invenio
spelling cern-3449772023-05-31T13:22:29Zdoi:10.1007/978-1-4757-9047-4_49http://cds.cern.ch/record/344977engCameron, WDambre, PKurtyka, TParma, VittorioRenaglia, TRifflet, J MRohmig, PSkoczen, BlazejTortschanoff, TheodorTrilhe, PVédrine, PVincent, DThe New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)Accelerators and Storage RingsThe lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of an SSS contains the twin aperture high-gradient superconducting quadrupole and two pairs of superconducting corrector magnets, operating in pressurized helium II at 1.9 K. Components for isolating cryostat insulation vacuum, and the cryogenic supply lines, have to be foreseen. Special emphasis is given to the design changes of the SSS following adoption of an external cryogenic supply line (QRL). A jumper connection connects the SSS to the QRL, linking all the cryogenic tubes necessary for the local full-cell cooling loop [at every second SSS]. The jumper is connected to one end of the standard cryostat section via the cryogenic service module, which also houses beam diagnostics, current feedthroughs, and instrumentation capillaries. The conceptual design fulfilling the tight requirements of magnet alignment precision and cryogenic performance are described. Construction details, aimed at minimizing costs of series manufacturing and assembly, while ensuring the high quality of this complex accelerator component, are given.LHC-Project-Report-162CERN-LHC-Project-Report-162oai:cds.cern.ch:3449771998-01-15
spellingShingle Accelerators and Storage Rings
Cameron, W
Dambre, P
Kurtyka, T
Parma, Vittorio
Renaglia, T
Rifflet, J M
Rohmig, P
Skoczen, Blazej
Tortschanoff, Theodor
Trilhe, P
Védrine, P
Vincent, D
The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title_full The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title_fullStr The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title_full_unstemmed The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title_short The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)
title_sort new superfluid helium cryostats for the short straight sections of the cern large hadron collider (lhc)
topic Accelerators and Storage Rings
url https://dx.doi.org/10.1007/978-1-4757-9047-4_49
http://cds.cern.ch/record/344977
work_keys_str_mv AT cameronw thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT dambrep thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT kurtykat thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT parmavittorio thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT renagliat thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT riffletjm thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT rohmigp thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT skoczenblazej thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT tortschanofftheodor thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT trilhep thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT vedrinep thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT vincentd thenewsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT cameronw newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT dambrep newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT kurtykat newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT parmavittorio newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT renagliat newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT riffletjm newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT rohmigp newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT skoczenblazej newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT tortschanofftheodor newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT trilhep newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT vedrinep newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc
AT vincentd newsuperfluidheliumcryostatsfortheshortstraightsectionsofthecernlargehadroncolliderlhc