Cargando…
Combinatorial Formulae for Vassiliev Invariants from Chern-Simons Gauge Theory
We analyse the perturbative series expansion of the vacuum expectation value of a Wilson loop in Chern-Simons gauge theory in the temporal gauge. From the analysis emerges the notion of the kernel of a Vassiliev invariant. The kernel of a Vassiliev invariant of order n is not a knot invariant, since...
Autores principales: | Labastida, J.M.F., Perez, Esther |
---|---|
Lenguaje: | eng |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.533311 http://cds.cern.ch/record/360365 |
Ejemplares similares
-
Kontsevich Integral for Vassiliev Invariants from Chern-Simons Perturbation Theory in the Light-Cone Gauge
por: Labastida, J.M.F., et al.
Publicado: (1997) -
Gauge-Invariant Operators for Singular Knots in Chern-Simons Gauge Theory
por: Labastida, J.M.F., et al.
Publicado: (1997) -
Knot operators in Chern-Simons gauge theory
por: Labastida, J M F, et al.
Publicado: (1990) -
ISO(2,1) gauge theory with the gravitational Chern-Simons term
por: Cho, J H, et al.
Publicado: (1994) -
Extension of Chern-Simons forms and new gauge anomalies
por: Antoniadis, Ignatios, et al.
Publicado: (2013)