Cargando…

Non-perturbative running of the average momentum of non-singlet parton densities

We determine non-perturbatively the anomalous dimensions of the second moment of non-singlet parton densities from a continuum extrapolation of results computed in quenched lattice simulations at different lattice spacings. We use a Schrödinger functional scheme for the definition of the renormaliza...

Descripción completa

Detalles Bibliográficos
Autores principales: Guagnelli, Marco, Jansen, Karl, Petronzio, Roberto
Lenguaje:eng
Publicado: 1998
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(98)00809-8
http://cds.cern.ch/record/364960
Descripción
Sumario:We determine non-perturbatively the anomalous dimensions of the second moment of non-singlet parton densities from a continuum extrapolation of results computed in quenched lattice simulations at different lattice spacings. We use a Schrödinger functional scheme for the definition of the renormalization constant of the relevant twist-2 operator. In the region of renormalized couplings explored, we obtain a good description of our data in terms of a three-loop expression for the anomalous dimensions. The calculation can be used for exploring values of the coupling where a perturbative expansion of the anomalous dimensions is not valid a priori. Moreover, our results provide the non-perturbative renormalization constant that connects hadron matrix elements on the lattice, renormalized at a low scale, with the experimental results, renormalized at much higher energy scales.