Cargando…
High rate behavior and discharge limits in micro-pattern detectors
We present and discuss a set of systematic measurements, carried out with gaseous proportional micro-pattern detectors, in order to assess their maximum gain when irradiated with high-rate soft X-rays and heavily ionizing alpha particles. The inventory of detectors tested includes: micro-strip micro...
Autores principales: | , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0168-9002(98)01317-5 http://cds.cern.ch/record/366793 |
Sumario: | We present and discuss a set of systematic measurements, carried out with gaseous proportional micro-pattern detectors, in order to assess their maximum gain when irradiated with high-rate soft X-rays and heavily ionizing alpha particles. The inventory of detectors tested includes: micro-strip micromegas, micro-dot, gas electron multiplier, CAT (compteur à trous), trench (or groove), micro-CAT (or WELL) detectors, as well as systems with two elements of gaseous amplification in cascade. We confirm the general trend of all single-stage detectors to follow Raether's criterion, i.e. a spontaneous transition from avalanche to streamer, followed by a discharge, when the avalanche size reaches a value of a few 10 7 ; a noticeable exception is the micro-dot counter holding more than 10 8. In multiple structures, where the gain under irradiation is increased by at least one order of magnitude; we speculate this to be a consequence of a voltage dependence of Raether's limit, larger for low operating potentials. Our conclusion is that only multiple devices can guarantee a sufficient margin of reliability for operation in harsh LHC running conditions. |
---|