Cargando…
Tune Optimization for Maximum Dynamic Acceptance 2: Qx = 65, Qy = 58
By minimizing the "figure of merit" FOM (defined in part I to be the fractional reduction in dynamic acceptance) in the presence of nonlinear elements in the LHC, optimal lattice parameters can be determined. Emphasis here is placed on determining the optimal integer tunes in the ranges 59...
Autor principal: | Talman, R |
---|---|
Lenguaje: | eng |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/367971 |
Ejemplares similares
-
Tune optimization for maximum dynamic acceptance; 1, formulation
por: Talman, R
Publicado: (1998) -
Hamiltonian theory of the crossing of the $2 Q_x -2 Q_y=0$ nonlinear coupling resonance
por: Bazzani, A., et al.
Publicado: (2022) -
PSB ME 30.5.96: 2Qy=11 revisited
por: Schindl, K
Publicado: (1996) -
Test of the 2Qy=12 resonance compensation for the LHC test beam: PS-MD report
por: Cappi, R, et al.
Publicado: (1994) -
IR4 Tuning for LHC V6.5
por: Verdier, A
Publicado: (2005)