Cargando…
$J/\psi$ production at CERN LEP: Revisited and resummed
We present the leading order differential and total rates for J/\psi production at LEP. By leading order we mean all terms of the form alpha_s[alpha_s log(M_Z^2/M_{psi}^2)]^n and alpha_s^{n+1} log^l(z^2) log^m(M_Z^2/M_{psi}^2), (l+m=2n-1), in the regions z=2E_psi/M_Z ~ O(1) and z << 1, respect...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.59.054016 http://cds.cern.ch/record/368064 |
Sumario: | We present the leading order differential and total rates for J/\psi production at LEP. By leading order we mean all terms of the form alpha_s[alpha_s log(M_Z^2/M_{psi}^2)]^n and alpha_s^{n+1} log^l(z^2) log^m(M_Z^2/M_{psi}^2), (l+m=2n-1), in the regions z=2E_psi/M_Z ~ O(1) and z << 1, respectively. In the intermediate region we interpolate using the available data. This resummation eliminates the O[alpha_s(M_psi)/alpha_s(M_Z)]~ 2 theoretical uncertainties in previous calculations. The log(z) resummation results in a suppression of the small z region due to coherent gluon emission. Comparing the zeroth moment with the LEP data we find the value for the effective octet matrix element to be <\hat O_8^{\psi}(^3S_1)>=0.019 GeV^3. The theoretical uncertainties are substantially smaller than those from Tevatron extractions. Using this value of the octet matrix element we make a prediction for the first moment of the differential rate and find that the resummed differential decay rate is in much better agreement with preliminary data than the color singlet result or the unresummed color octet prediction. |
---|