Cargando…

Multi-Instantons and Maldacena's Conjecture

We examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton coll...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorey, N, Hollowood, Timothy J, Khoze, V V, Mattis, M P, Vandoren, S
Lenguaje:eng
Publicado: 1999
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/1999/06/023
http://cds.cern.ch/record/369588
_version_ 1780893049834962944
author Dorey, N
Hollowood, Timothy J
Khoze, V V
Mattis, M P
Vandoren, S
author_facet Dorey, N
Hollowood, Timothy J
Khoze, V V
Mattis, M P
Vandoren, S
author_sort Dorey, N
collection CERN
description We examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) At the k-instanton level $G_n \sim \sqrt{N} g^8 k^n {\cal Z}_k F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA propagators, and {\cal Z}_k is the partition function for 10-dimensional N=1 SU(k) gauge theory on flat space, reduced to 0 dimensions; this is in agreement with type IIB superstring calculations, up to an unknown k-dependent normalization factor for {\cal Z}_k.
id cern-369588
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1999
record_format invenio
spelling cern-3695882019-09-30T06:29:59Zdoi:10.1088/1126-6708/1999/06/023http://cds.cern.ch/record/369588engDorey, NHollowood, Timothy JKhoze, V VMattis, M PVandoren, SMulti-Instantons and Maldacena's ConjectureParticle Physics - TheoryWe examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) At the k-instanton level $G_n \sim \sqrt{N} g^8 k^n {\cal Z}_k F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA propagators, and {\cal Z}_k is the partition function for 10-dimensional N=1 SU(k) gauge theory on flat space, reduced to 0 dimensions; this is in agreement with type IIB superstring calculations, up to an unknown k-dependent normalization factor for {\cal Z}_k.hep-th/9810243UW-PT 98-18DTP-98-74SWAT-98-207oai:cds.cern.ch:3695881999
spellingShingle Particle Physics - Theory
Dorey, N
Hollowood, Timothy J
Khoze, V V
Mattis, M P
Vandoren, S
Multi-Instantons and Maldacena's Conjecture
title Multi-Instantons and Maldacena's Conjecture
title_full Multi-Instantons and Maldacena's Conjecture
title_fullStr Multi-Instantons and Maldacena's Conjecture
title_full_unstemmed Multi-Instantons and Maldacena's Conjecture
title_short Multi-Instantons and Maldacena's Conjecture
title_sort multi-instantons and maldacena's conjecture
topic Particle Physics - Theory
url https://dx.doi.org/10.1088/1126-6708/1999/06/023
http://cds.cern.ch/record/369588
work_keys_str_mv AT doreyn multiinstantonsandmaldacenasconjecture
AT hollowoodtimothyj multiinstantonsandmaldacenasconjecture
AT khozevv multiinstantonsandmaldacenasconjecture
AT mattismp multiinstantonsandmaldacenasconjecture
AT vandorens multiinstantonsandmaldacenasconjecture