Cargando…
Multi-Instantons and Maldacena's Conjecture
We examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton coll...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/1999/06/023 http://cds.cern.ch/record/369588 |
_version_ | 1780893049834962944 |
---|---|
author | Dorey, N Hollowood, Timothy J Khoze, V V Mattis, M P Vandoren, S |
author_facet | Dorey, N Hollowood, Timothy J Khoze, V V Mattis, M P Vandoren, S |
author_sort | Dorey, N |
collection | CERN |
description | We examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) At the k-instanton level $G_n \sim \sqrt{N} g^8 k^n {\cal Z}_k F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA propagators, and {\cal Z}_k is the partition function for 10-dimensional N=1 SU(k) gauge theory on flat space, reduced to 0 dimensions; this is in agreement with type IIB superstring calculations, up to an unknown k-dependent normalization factor for {\cal Z}_k. |
id | cern-369588 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1999 |
record_format | invenio |
spelling | cern-3695882019-09-30T06:29:59Zdoi:10.1088/1126-6708/1999/06/023http://cds.cern.ch/record/369588engDorey, NHollowood, Timothy JKhoze, V VMattis, M PVandoren, SMulti-Instantons and Maldacena's ConjectureParticle Physics - TheoryWe examine certain n-point functions G_n in N=4 supersymmetric SU(N) gauge theory at the conformal point. In the large-N limit, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N instanton collective coordinate space has the geometry of AdS_5 x S^5. (2) At the k-instanton level $G_n \sim \sqrt{N} g^8 k^n {\cal Z}_k F_n(x_1,...,x_n)$, where F_n is identical to a convolution of n bulk-to-boundary SUGRA propagators, and {\cal Z}_k is the partition function for 10-dimensional N=1 SU(k) gauge theory on flat space, reduced to 0 dimensions; this is in agreement with type IIB superstring calculations, up to an unknown k-dependent normalization factor for {\cal Z}_k.hep-th/9810243UW-PT 98-18DTP-98-74SWAT-98-207oai:cds.cern.ch:3695881999 |
spellingShingle | Particle Physics - Theory Dorey, N Hollowood, Timothy J Khoze, V V Mattis, M P Vandoren, S Multi-Instantons and Maldacena's Conjecture |
title | Multi-Instantons and Maldacena's Conjecture |
title_full | Multi-Instantons and Maldacena's Conjecture |
title_fullStr | Multi-Instantons and Maldacena's Conjecture |
title_full_unstemmed | Multi-Instantons and Maldacena's Conjecture |
title_short | Multi-Instantons and Maldacena's Conjecture |
title_sort | multi-instantons and maldacena's conjecture |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1088/1126-6708/1999/06/023 http://cds.cern.ch/record/369588 |
work_keys_str_mv | AT doreyn multiinstantonsandmaldacenasconjecture AT hollowoodtimothyj multiinstantonsandmaldacenasconjecture AT khozevv multiinstantonsandmaldacenasconjecture AT mattismp multiinstantonsandmaldacenasconjecture AT vandorens multiinstantonsandmaldacenasconjecture |