Cargando…

Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter

Detalles Bibliográficos
Autor principal: Seixas, J
Lenguaje:eng
Publicado: 1998
Materias:
Acceso en línea:http://cds.cern.ch/record/369624
_version_ 1780893054042898432
author Seixas, J
author_facet Seixas, J
author_sort Seixas, J
collection CERN
id cern-369624
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1998
record_format invenio
spelling cern-3696242019-09-30T06:29:59Zhttp://cds.cern.ch/record/369624engSeixas, JUsing neural networks to learn energy correction factors: a case study for the ATLAS calorimeterDetectors and Experimental TechniquesCERN-TH-98-191oai:cds.cern.ch:3696241998
spellingShingle Detectors and Experimental Techniques
Seixas, J
Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title_full Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title_fullStr Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title_full_unstemmed Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title_short Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
title_sort using neural networks to learn energy correction factors: a case study for the atlas calorimeter
topic Detectors and Experimental Techniques
url http://cds.cern.ch/record/369624
work_keys_str_mv AT seixasj usingneuralnetworkstolearnenergycorrectionfactorsacasestudyfortheatlascalorimeter